Use of marginal distributions constrained optimization (MADCO) for accelerated 2D MRI relaxometry and diffusometry.
نویسندگان
چکیده
Measuring multidimensional (e.g., 2D) relaxation spectra in NMR and MRI clinical applications is a holy grail of the porous media and biomedical MR communities. The main bottleneck is the inversion of Fredholm integrals of the first kind, an ill-conditioned problem requiring large amounts of data to stabilize a solution. We suggest a novel experimental design and processing framework to accelerate and improve the reconstruction of such 2D spectra that uses a priori information from the 1D projections of spectra, or marginal distributions. These 1D marginal distributions provide powerful constraints when 2D spectra are reconstructed, and their estimation requires an order of magnitude less data than a conventional 2D approach. This marginal distributions constrained optimization (MADCO) methodology is demonstrated here with a polyvinylpyrrolidone-water phantom that has 3 distinct peaks in the 2D D-T1 space. The stability, sensitivity to experimental parameters, and accuracy of this new approach are compared with conventional methods by serially subsampling the full data set. While the conventional, unconstrained approach performed poorly, the new method had proven to be highly accurate and robust, only requiring a fraction of the data. Additionally, synthetic T1-T2 data are presented to explore the effects of noise on the estimations, and the performance of the proposed method with a smooth and realistic 2D spectrum. The proposed framework is quite general and can also be used with a variety of 2D MRI experiments (D-T2,T1-T2,D-D, etc.), making these potentially feasible for preclinical and even clinical applications for the first time.
منابع مشابه
Towards clinically feasible relaxation-diffusion correlation MRI using MADCO
Multidimensional relaxation-diffusion correlation (REDCO) NMR is an assumption-free method that measures howwater is distributed within materials. Although highly informative, REDCO had never been used in clinical MRI applications because of the large amount of data it requires, leading to infeasible scan times. A recently suggested novel experimental design and processing framework, marginal d...
متن کاملSpatially resolved and clinically feasible relaxation-di↵usion correlation spectroscopy in the spinal cord
Introduction: Combining and correlating multidimensional magnetic resonance (MR) contrast mechanisms, e.g., D-T2, would provide novel and complementary information about dynamic molecular processes and microscopic physical and chemical environments within tissue. To date, these multidimensional relaxation–di↵usion correlation (REDCO) experiments have been primarily relegated to applications inv...
متن کاملClinically feasible relaxation-diffusion correlation MRI using MADCO
Even though the brain is microscopically heterogeneous, the majority of currently used quantitative MRI methods in brain research employ idealized models to describe specific structures. Multidimensional relaxation-diffusion correlation (REDCO) is an assumption-free method that measures how water is distributed within the tissue. REDCO had never been used in clinical applications because of the...
متن کاملCharacterizing Fluid Presence and Transport in Rock Cores at Reservoir-like Conditions via Spatially Resolved Nmr Relaxation/diffusion Maps
The properties of fluids saturating rocks depend strongly on temperature and pressure. Therefore, ambient laboratory conditions may not be desirable for the investigation of fluids in reservoir rocks. To mimic the reservoir, a pressurized and temperature controlled (overburden) cell, compatible with Nuclear Magnetic Resonance (NMR), was assembled within a 2 MHz NMR Rock Core Analyzer. 1D NMR re...
متن کاملتعیین پروتکل بهینه جهت اندازه گیری میزان تراکم استخوان با استفاده از MRI Relaxometry و مقایسه نتایج حاصل با تکنیک DEXA
Introduction & Objective : The aim of this study was to optimize MRI conventional protocols for BMD(Bone Mineral Density) measurements using MRI Relaxometry in systems not facilitated with special multi echo protocols. Since, cortical and trabecular bone separation can not be performed in DEXA, so the results might lead to erroneous interpretation of BMD values. One method for bone quality dete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of magnetic resonance
دوره 271 شماره
صفحات -
تاریخ انتشار 2016